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Logistic regression

Reading: 5.1 & 5.2 in Data Analysis Using Regression and
Multilevel/Hierarchical Models, Gelman & Hill
(http://search.library.oregonstate.edu/OSU:everything:
CP71242639930001451)

Logistic regression is the standard way to model binary outcomes.

I.e. a response variable that only takes the values 0 or 1.

yi =

1, with probability pi

0, with probability 1− pi
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Example: political preference from Gelman & Hill

Conservative parties generally receive more support among
voters with higher incomes. We illustrate classical logistic
regresssion with a simple analysis of this pattern from the
National Election Study in 1992.
For each repondent, i , in this poll, we label yi = 1 if he
or she preferred George Bush (the Republican candiadate
for president) or 0 is he or she preferred Bill Clinton (the
Democratic candidate), for now excluding repondents who
preferred Ross Perot or other candidates.
We predict preferences given the respondent’s income level
which is characterized on a five-point scale.
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yi =

1, respondent i preferred George Bush
0, respondent i preferred Bill Clinton

xi = Income class of respondent i : 0 (poor), 1, 2, 3, 4 or 5 (rich)

Our goal is to relate yi to xi .
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Exploratory analysis in R

Can we fit a regression model?

Should we fit a regression model?
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Logistic regression model

In logistic regression, the response is related to the explantories
through the probability of the response being 1:

logit (P(yi = 1)) = Xiβ

or equivalently

P(yi = 1) = logit−1 (Xiβ)

where logit(pi) = log
(

pi
1−pi

)
Xiβ is known as the linear predictor.

yi are assumed to be i.i.d Bernoulli with probability pi of success.
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The inverse logit transforms continuous values to (0, 1)
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Interpreting the logistic regression coefficients

fit_1 <- glm(vote ~ income, family = binomial(link = "logit"),
data = pres_1992)

summary(fit_1)

##
## Call:
## glm(formula = vote ~ income, family = binomial(link = "logit"),
## data = pres_1992)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.2756 -1.0034 -0.8796 1.2194 1.6550
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.40213 0.18946 -7.401 1.35e-13 ***
## income 0.32599 0.05688 5.731 9.97e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1591.2 on 1178 degrees of freedom
## Residual deviance: 1556.9 on 1177 degrees of freedom
## AIC: 1560.9
##
## Number of Fisher Scoring iterations: 4
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The fitted model
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Interpreting the logistic regression coefficients

Very generally, a coefficient greater than zero indicates increasing
probability with increasing explanatory. A coefficient less than zero
indicates decreasing probability with increasing explanatory.

But, the non-linear relationship with pi makes it hard to interpret
that exact value.

Three approaches:

At or near center of data

Divide by 4 rule

Odds ratios
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At or near center of data

invlogit <- function(x) 1/(1 + exp(-x))
# = Interpret at some x =
mean_inc <- with(pres_1992, mean(income, na.rm=T))
invlogit(-1.40 + 0.33*mean_inc)

## [1] 0.4049001

Estimated probability of supporting Bush for a respondent
of average income is 0.4
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At or near center of data

# = Interpret change in P for 1 unit change in x, at some x =
invlogit(-1.40 + 0.33*3) - invlogit(-1.40 + 0.33*2)

## [1] 0.07590798

An increase in income from category 2 to category 3 is
associated with an increase in the estimated probability of
supporting Bush of 0.08
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At or near center of data

logit_p <- (-1.40 + 0.33*3.1)
0.33*exp(logit_p)/(1 + exp(logit_p))^2

## [1] 0.07963666

Each “small” unit of increase in income, at the average
income, is associated with an increase in the estimated
probability of supporting Bush of 0.08
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Divide by 4 rule

The logistic function reaches its maximum slope at its center,
where the derivative is β/4.

# = Interpret bound on change in P =
coef(fit_1)[2]/4

## income
## 0.08149868

At most a one unit change in income is associated with an
increase of P(Bush) of 0.08
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Odds ratios

log
(P(y = 1|x)
P(y = 0|x)

)
= α+ βx

A unit increase in x results in a β increase in the log odds ratio of
supporting Bush.

A one unit increase in income is associated with a change
in the log odds ratio of 0.33
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Inference & prediction

Coefficients are estimated with maximum likelihood.

Standard errors represent uncertainty in estimates.

Assymptotically, estimates are Normally distributed under repeated
sampling.

An approximate 95% confidence interval for estimates is:
estimate ±2×standard error

Predictions take the form of a predictive probability

p̂0 = P̂(y0 = 1) = logit−1(x0β̂)

For a voter not in the survey with an income level of 5,
the predicted probability of supporting Bush is 0.55
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