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What to expect on the final?
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Three questions worth roughly equal amounts

1. Calculations, inference and interpretation. Like Q2 and
Q3 on midterm: t-tests, F-tests, confidence intervals,
prediction intervals etc. Know your formulas, how to use them
and how to interpret the results.

2. Assumptions and diagnostics. Examine plots, identify
problems, discuss the consequences of the problem, suggest
remedies, suggest ways to verify if the suggestions worked. Or
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suggest ways to diagnose certain problems.

3. Everything else, at a conceptual level.



Lab in Week 10

Some options:

= Revisit a topic (or more depth on a topic). Which topic?
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= The Bias-Variance tradeoff

= Regularized regression: lasso and ridge



Bias-Variance tradeoff

For estimates, the mean squared error of an estimate can be
Sstimates,
broken down into bias and variance terms:

MSE(D) =E ((6—0)?) =E ((9 —E (9))2> +(E(9) - 9)2
= Var (Q) + Bias (Q)z
Often in statistics, we focus on estimates that are unbiased (so the

second term is zero), and focus on minimising the variance term.

You might argue that you are willing to introduce a little bias, if it
reduces the variance enough to reduce the overall mean squared

error in the estimate.



There is a simj reakdown for the mean square error in
prediction. Let|#(X)
an observation w|th explanantory values X. ©

indicate the regression model for predicting

(<)
If the true data is generated according to Y = f(X) + ¢,|where
E(¢) = 0 and Var(¢) = 02, then the MSE for a point xg:

MSE (F(X)|X = x0) =
EG(Y—f(X h X = )

= ((F0) £ (F0))) ) + FE((v e ()
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Bias captures how far our predictions are from the true mean on
0~

average (over repeated samples). overany

Variance captures how much our predictions vary (over repeated
samples).



Simulated Example
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High bias, low variance
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Bias Variance tradeoff
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In general, more complex models decrease bias and increase
variance. We hunt for the sweet spot where MSE is minimized.

There aren't nice partitions into bias and variance for other metrics, but the pattern is

usually the same. Increasing complexity only improves performance to a point, then it

decreases performance. 11



Regularized regression

One approach that introduces bias into the coefficient estimates, is

regularized (a.k.a. penalized) regression. Instead of minimising
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When f(3;) = 51-2, the method is called ridge regression, ar‘?d

when f(5;) = |B;| the method is called lasso.

The general idea: the first term rewards good fit to the data, the
second penalizses for large values on the coefficients.

The result: estimates shrink toward zero (introducing bias) and

have smaller variance.
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Alternative view

You can also view ridge and lasso as constrained minimisation,

where we minimise
n

> (i— i)

i=1

subject to the constraints
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Ridge estimates
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Lasso estimates

LASSO
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Finding the tuning parameter

cvout <- cv.lars(as.matrix(trainmeat[ , -101]), trainmeat$fat)
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Tuning parameter

(best_s <- cvout$index[which.min(cvout$cv)])

## [1] 0.02020202

RMSE for this value:
testx <- as.matrix(testmeat[,-101])
predlars <- predict(fit_lasso, testx, s=best_s,

mode="fraction")
sqrt (mean((testmeat$fat - predlars$fit)~2))

## [1] 2.062124
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Estimated coefficicents
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= Regularized/Penalized regression models have a tuning
parameter that controls the degree of penalization/shrinkage
= The tuning parameter may be chosen to optimize some kind

of criterion
= Lasso estimates can be exactly zero (so it performs model

selection as well)
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