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Problems with the errors

= Generalized Least Squares
= Lack of fit F-tests
= Robust regression



Generalized Least Squares

Y =X3+¢€

= We have assumed Var (¢) = o2/, but what if we know
Var (¢) = 0?%, where o2 is unknown, but ¥ is known. For
example, we know the form of the correlation and/or
non-constant variance in the response.

= The usual least squares estimates s are unbiased, but they
are no longer BLUE.

Let S be the matrix square root of ¥, i.e. ¥ = SST.
Define a new regression equation by multiplying both sides by S
STly =S5 1XB+ S5t
Y =X'B+¢



Your Turn

Show Var (€¢') = Var (S71e) = o2I.

Show the least squares estimates for the new regression equation
reduce to:
f=(XTE X)) 'xTg 1ty



Can also show Var (3) = (XTZ71X) 152
The estimates: 3 = (XTEZ1X)"1XTE 1Y are known as
generalized least squares estimates.

In practice, & might only be know up to a few parameters

that also need to be estimated.



Common cases of GLS

= Y defines a temporal or spatial correlation structure
= 3 defines a grouping structure

= Y is diagonal and defines a weighting structure (Weighted
Least Squares)



?lm # use weights argument
library(nlme)

7gls # has wetights and/or correlation argument



Oat yields

Data from an experiment to compare 8 varieties of oats.
The growing area was heterogeneous and so was grouped
into 5 blocks. Each variety was sown once within each
block and the yield in grams per 16ft row was recorded.

yield; = Bo + Pivariety; +¢; i=1,...,40

p, block; = if block;

2
Var (¢;)) = 0, Cor(ej, €j) = _
0, otherwise
library(nlme)
fit_gls <- gls(yield ~ variety, data = oatvar,
correlation = corCompSymm(form = ~ 1 | block))



Oat yields in R

intervals(fit_gls)

## Approximate 95, confidence intervals
##
## Coefficients:

## lower est. upper
## (Intercept) 291.542999 334.4 377.2570009
## variety2 -4.903898 42.2 89.3038984
## variety3 -18.903898 28.2 75.3038984
## variety4 -94.703898 -47.6 -0.4961016
## varietyb 57.896102 105.0 152.1038984
## variety6 -50.903898 -3.8 43.3038984
## variety7 -63.103898 -16.0 31.1038984
## variety8 2.696102 49.8 96.9038984
## attr(,"label")

## [1] "Coefficients:"

##

## Correlation structure:

## lower est. upper

## Rho 0.06596382 0.3959955 0.7493731
## attr(,"label")

## [1] "Correlation structure:"
##

## Residual standard error:

## lower est. upper
## 33.39319 47.04679 66.28298



Lack of fit F-tests

= o2 should be (if our model is specified correctly) an unbiased
estimate of o2.

= A “model free” estimate of o2 is available if there are
replicates (multiple observations at combinations of the
explanatory values).

= If our 02 from our model is much bigger than the
“model-free” estimate, we have evidence of lack of fit.
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In practice

= Fit a saturated model. Compare saturated model to proposed
model with an F-test. Lack of fit F-test.

= Saturated: every combination of explanatory variables is
allowed its own mean (i.e. every group of replicates is allowed
its own mean). A model that includes every explantory as
categorical and every possible interaction between variables.
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data(corrosion, package = '"faraway")
Im_
1m_
anova(lm_cor, 1lm_sat)

##
##
##
##
##
##
##
##
##

cor <- 1lm(loss ~ Fe, data = corrosion)
sat <- 1lm(loss ~ factor(Fe), data = corrosion)

Analysis of Variance Table

Model 1: loss ~ Fe
Model 2: loss ~ factor(Fe)

Res.Df RSS Df Sum of Sq F  Pr(>F)
1 11 102.850
2 6 11.782 5 91.069 9.2756 0.008623 *x*
Signif. codes: O '*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

# significant lack of fit
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Robust regression

Remember to define our least squares estimates we looked for 3 to
minimise
n

Z (Yi - XiTﬁ)z

i=1

In practice, since we are squaring residuals, observations with large
residuals carry a lot of weight. For, robust regression, we want to

downweight the observations with large residuals.

The idea of M-estimators is to extend this to the general situation

where we want to find § to minimise
n
Z p(yi — XiTB)
i=1

where p() is some function we specify.
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Z p(yi — XiTﬁ)
i=1

Least squares: p(e;) = €7

Least absolute deviation, L regression: p(e;) = |e;
= Huber’'s method

e?/2 if |ej] <c
plei) =

cleil — c?/2 otherwise

= Tukey's bisquare

plei) = _
otherwise

{é(cﬁ—(c2—e,-2)3) ] < c
0

The models are usually fit in an iterative process.
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Least trimmed squares

Minimise the smallest residuals
. 2
>y
i=1

where q is some number smaller than n and e;) is the ith smallest

residual.

One choice, g = [n/2] + |(p+1)/2]
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Annual numbers of telephone calls in Belgium
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