
Problems with the error
ST552 Lecture 19

Charlotte Wickham
2019-02-22

1



Today

Problems with the errors

• Generalized Least Squares
• Lack of fit F-tests
• Robust regression
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Generalized Least Squares

Y = Xβ + ε

• We have assumed Var (ε) = σ2I, but what if we know
Var (ε) = σ2Σ, where σ2 is unknown, but Σ is known. For
example, we know the form of the correlation and/or
non-constant variance in the response.

• The usual least squares estimates β̂LS are unbiased, but they
are no longer BLUE.

Let S be the matrix square root of Σ, i.e. Σ = SST .

Define a new regression equation by multiplying both sides by S−1:

S−1Y = S−1Xβ + S−1ε

Y ′ = X ′β + ε′
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Your Turn

Show Var (ε′) = Var
(
S−1ε

)
= σ2I.

Show the least squares estimates for the new regression equation
reduce to:

β̂ = (XT Σ−1X )−1XT Σ−1Y
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• Can also show Var (β) = (XT Σ−1X )−1σ2.
• The estimates: β̂ = (XT Σ−1X )−1XT Σ−1Y are known as

generalized least squares estimates.
• In practice, Σ might only be know up to a few parameters

that also need to be estimated.
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Common cases of GLS

• Σ defines a temporal or spatial correlation structure

• Σ defines a grouping structure

• Σ is diagonal and defines a weighting structure (Weighted
Least Squares)
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In R

?lm # use weights argument
library(nlme)
?gls # has weights and/or correlation argument
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Oat yields

Data from an experiment to compare 8 varieties of oats.
The growing area was heterogeneous and so was grouped
into 5 blocks. Each variety was sown once within each
block and the yield in grams per 16ft row was recorded.

yieldi = β0 + β1varietyi + εi i = 1, . . . , 40

Var (εi ) = σ2, Cor(εi , εj) =

ρ, blocki = if blockj

0, otherwise

library(nlme)
fit_gls <- gls(yield ~ variety, data = oatvar,

correlation = corCompSymm(form = ~ 1 | block))
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Oat yields in R

intervals(fit_gls)

## Approximate 95% confidence intervals
##
## Coefficients:
## lower est. upper
## (Intercept) 291.542999 334.4 377.2570009
## variety2 -4.903898 42.2 89.3038984
## variety3 -18.903898 28.2 75.3038984
## variety4 -94.703898 -47.6 -0.4961016
## variety5 57.896102 105.0 152.1038984
## variety6 -50.903898 -3.8 43.3038984
## variety7 -63.103898 -16.0 31.1038984
## variety8 2.696102 49.8 96.9038984
## attr(,"label")
## [1] "Coefficients:"
##
## Correlation structure:
## lower est. upper
## Rho 0.06596382 0.3959955 0.7493731
## attr(,"label")
## [1] "Correlation structure:"
##
## Residual standard error:
## lower est. upper
## 33.39319 47.04679 66.28298
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Lack of fit F-tests

• σ̂2 should be (if our model is specified correctly) an unbiased
estimate of σ2.

• A “model free” estimate of σ2 is available if there are
replicates (multiple observations at combinations of the
explanatory values).

• If our σ̂2 from our model is much bigger than the
“model-free” estimate, we have evidence of lack of fit.
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In practice

• Fit a saturated model. Compare saturated model to proposed
model with an F-test. Lack of fit F-test.

• Saturated: every combination of explanatory variables is
allowed its own mean (i.e. every group of replicates is allowed
its own mean). A model that includes every explantory as
categorical and every possible interaction between variables.
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Example

data(corrosion, package = "faraway")
lm_cor <- lm(loss ~ Fe, data = corrosion)
lm_sat <- lm(loss ~ factor(Fe), data = corrosion)
anova(lm_cor, lm_sat)

## Analysis of Variance Table
##
## Model 1: loss ~ Fe
## Model 2: loss ~ factor(Fe)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 11 102.850
## 2 6 11.782 5 91.069 9.2756 0.008623 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# significant lack of fit
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Robust regression

Remember to define our least squares estimates we looked for β to
minimise n∑

i=1

(
yi − xT

i β
)2

In practice, since we are squaring residuals, observations with large
residuals carry a lot of weight. For, robust regression, we want to
downweight the observations with large residuals.

The idea of M-estimators is to extend this to the general situation
where we want to find β to minimise

n∑
i=1

ρ(yi − xT
i β)

where ρ() is some function we specify.
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n∑
i=1

ρ(yi − xT
i β)

• Least squares: ρ(ei ) = e2
i

• Least absolute deviation, L1 regression: ρ(ei ) = |ei |
• Huber’s method

ρ(ei ) =

e2
i /2 if |ei | ≤ c

c|ei | − c2/2 otherwise

• Tukey’s bisquare

ρ(ei ) =


1
6(c6 − (c2 − e2

i )3) |ei | ≤ c
0 otherwise

The models are usually fit in an iterative process.

17



Least trimmed squares

Minimise the smallest residuals
q∑

i=1
e2

(i)

where q is some number smaller than n and e(i) is the ith smallest
residual.

One choice, q = bn/2c+ b(p + 1)/2c
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Annual numbers of telephone calls in Belgium
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