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Problems with the errors

= Generalized Least Squares
= Lack of fit F-tests
= Robust regression



Generalized Least Squares
Y = XB+e

. umed Var (¢) = o2/, but what if we know
Var () = 0°L%,

2y |where o is unknown, but ¥ is known. For

-_ ) ———

example, we know the form of the correlation and/or
non-constant variance in the response.

= The usual least squares estimates fBis are unbiased, but they
are no longer BLUE.

Let S be the matrix square root of ¥, i.ej Y = SST.i

Define a new regression equation by multiplying both sides by@
}5—1}/ — 51XB + 571
( YI — XIB + 6/ ’




Your Turn

Show Var (€¢') = Var (§71e) = o2I. \IN@ )24 25= 6557
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Show the least squares estimates for the new regression equation
reduce to: GLS
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A
Can also show Var (3) = (XTZ71X) 12
The estimates: 3 = (XTEZ1X)"1XTE 1Y are known as
generalized least squares estimates.

In practice, & might only be know up to a few parameters

that also need to be estimated.



Common cases of GLS

= Y defines a temporal or spatial correlation structure
whas obs Gre ~mwews cusdk ‘Hn)'ouﬁf\ [
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= 3 defines a grouping structure ES‘ T ol assne AQ(\B
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= Y is diagonal and defines a weighting structure (Weighted
Least Squares)
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?1lm # use weights argument £ S 8~ p/'-UIZW\) ‘/%QL
library(nlme)

7gls # has wetights and/or correlation argument



Oat yields

Data from an experiment to compare 8 varieties of oats.
The growing area was heterogeneous and so was grouped
into 5 blocks. Each variety was sown once within each

block and the yield in grams per 16ft row was recorded. oy
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yieldi:50+®?+€i i=1,...,40
p.if block; =4 block;

0, otherwise

Var (¢;) = 02, Cor(ej, €j) = {

library(nlme)
fit_gls <- gls(yield ~ variety, data = oatvar,
correlation =‘2rCompSymm(form = - 1 | blocky
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Oat yields in R

intervals(fit_gls)

##
## Coefficients:

- - -\ -
## Approximate 957 confidence intervals < K\ Z) lx) X(z Y Y

## lower est. upper

## (Intercept) 291.542999 334.4 377.2570009

## variety2 -4.903898 42.2 89.3038984 lW\

## variety3 -18.903898 28.2 75.3038984

## variety4 -94.703898 -47.6 -0.4961016

## varietyb 57.896102 105.0 152.1038984

## variety6 -50.903898 -3.8 43.3038984

## variety7 -63.103898 -16.0 31.1038984

## variety8 2.696102 49.8 96.9038984

## attr(,"label") u

## [1] "Coefficients:"

## -
## Correlation structure: b O ,7 b
## lower est. upper O ° O |

## Rho 0.06596382 0.3959955 0.7493731 P

## attr(,"label")

## [1] "Correlation structure:"
##

## Residual standard error:

## lower est. upper
## 33.39319 47.04679 66.28298



Lack of fit F-tests

2 khould be (if our model is specified correctly) an unbiased
Estimate of 2.

= A “model free” estimate of o2 is available if there are
replicates (multiple observations at combinations of the
explanatory values).

= If our 02 from our model is much bigger than the
“model-free” estimate, we have evidence of lack of fit.

oo ovs 0~




In practice

= Fit a saturated model. Compare saturated model to proposed
model with an F-test. Lack of fit F-test.

= Saturated: every combination of explanatory variables is
allowed its own mean (i.e. every group of replicates is allowed
its own mean). A model that includes every explarttory as
categorical and every possible interaction between variables.
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data(corrosion, package = "faraway")
1m_cor <- 1m(loss ~ Fe, data = corrosion) ‘j
1m_sat <- 1lm(loss ~ factor(Fe), data = corrosion)

anova(lm_cor, 1lm_sat)

## Analysis of Variance Table
#it

## Model 1: loss ~ Fe

## Model 2: loss ~ factor(Fe)

##  Res.Df RSS Df Sum of Sq F  PrOOF)

## 1 11 102.850

## 2 6 11.782 5 91.069 9.2756

## -—-

## Signif. codes: 0O '*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

# significant lack of fit
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Robust regression

Remember to define our least squares estimates we looked for 3 to

i (Yi - XiTﬁ)z

=1 ——

minimise

In practice, since we are squaring residuals, observations with large

residuals carry a lot of weight. For, robust regression, we want to

downweight the observations with large residuals.

The idea of M-estimators is to extend this to the general situation

where we want to find § to minimise
n
Zp(yi - XiTB)
=

where p() is some function we specify.
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Z p(yi — XiTﬁ)
i=1

«

Least squares: p(e;) = €7

Least absolute deviation, L regression: p(e;) = |e;
= Huber’'s method

oler) = {9?/2 if | ejl SB

cleil — c?/2 otherwise

= Tukey's bisquare

plei) = {

The models are usually fit in an iterative process.

otherwise
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Least trimmed squares

Minimise the smallest residuals
. 2
>y
i=1

where q is some number smaller than n and e;) is the ith smallest

residual.

One choice, g = [n/2] + |(p+1)/2]
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Annual numbers of telephone calls in Belgium
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