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Roadmap

Done:

• Regression model set up and assumptions

• Least squares estimates and properties

• Inference

• Diagnostics

To Do:

• Specific problems that arise and some extensions

• Model Selection (week 8)

• Some case studies (week 9)

• Non-linear, binary data (week 10)

There will be 8 homeworks total, recall your lowest score is

dropped.
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Today

Problems with predictors (Faraway 7)

• Collinearity

• Linear transformations of variables

• Errors in predictors
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Seat position in cars

data(seatpos, package = "faraway")
?seatpost

Car drivers like to adjust the seat position for their own

comfort. Car designers would find it helpful to know where

di�erent drivers will position the seat depending on their

size and age. Researchers at the HuMoSim laboratory at

the University of Michigan collected data on 38 drivers.

The dataset contains the following variables:

Age, Age, years

Weight, Weight, lbs

HtShoes, Height in shoes, cm

Ht, Height bare foot, cm

Seated, Seated height, cm

Arm, lower arm length, cm

Thigh, Thigh length, cm

Leg, Lower leg length, cm

hipcenter, horizontal distance of the

midpoint of the hips from a fixed

location in the car, mm
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library(ggplot2)

ggplot(seatpos, aes(Ht, hipcenter)) +
geom_point()
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lmod <- lm(hipcenter ~ ., data = seatpos)

sumary(lmod)

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 436.432128 166.571619 2.6201 0.01384

## Age 0.775716 0.570329 1.3601 0.18427

## Weight 0.026313 0.330970 0.0795 0.93718

## HtShoes -2.692408 9.753035 -0.2761 0.78446

## Ht 0.601345 10.129874 0.0594 0.95307

## Seated 0.533752 3.761894 0.1419 0.88815

## Arm -1.328069 3.900197 -0.3405 0.73592

## Thigh -1.143119 2.660024 -0.4297 0.67056

## Leg -6.439046 4.713860 -1.3660 0.18245

##

## n = 38, p = 9, Residual SE = 37.72029, R-Squared = 0.69
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• Exact collinearity If X
T

X is singular, we say there is exact

collinearity. There is at least one column that is a linear

combination of the others. In R you will get NA for some

estimates. Solution drop a column involved, or add

constraints on the parameters

• Collinearity or multi-collinearity refers to the case where

X
T

X is close to singular. There is at least one column that is

almost a linear combination of the others. Or in other words

one column is highly correlated with a combination of others.

In practice this leads to imprecise estimates (i.e. estimates

with large standard errors)
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Variance inflation factors

Let R
2
i be the R

2
from the regression of the ith explanatory

variable on all the other explanatory variables. That is, the

proportion of the variation in the ith explanatory variable that is

explained by the other explanatory variables.

If the ith variable was orthogonal to the other variables, R
2
i = 0.

If the ith variable was a linear combination of the other variables,

R
2
i = 1.

Var

1
—̂j

2
= ‡2

A
1

1 ≠ R2
j

B
1

q
i(xij ≠ x̄j)2

where

3
1

1≠R2

j

4
is known as the variance inflation factor.
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This is not a violation of the assumptions

• Multi-collinearity does not violate any regression assumption.

• Our t-tests, F-tests, confidence intervals and prediction

intervals all behave as they should.

• The problem is the interpretation of individual parameter

estimates. It no longer makes much sense to talk about “. . .

the e�ect of X1 holding other variables constant” because we

have observed a relationship between X1 and the other

variables.

• We can’t separate the e�ects of the variables that are

collinear, and our standard errors reflect this accurately by

being large.
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Detecting multicollinearity

In the seat example: large model R
2

but nothing is individually

significant. Large standard errors on terms that should be highly

significant.

1. Look at the correlation matrix of the explanatory variables.

But, this will only identify pairs of explanatories that are

correlated (not complicated relationships)

2. Regress Xi on other variables and look for high R
2
,

equivalently directly find variance inflation factors.

3. Look at the eigenvalues of X
T

X and look for condition

numbers

Ÿ =

Û
⁄1

⁄p
> 30
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Example

Go through example in R
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What to do about multicollinearity?

• Most importantly identify when it occurs, so you don’t make

stupid statements about individual parameter estimates.

• For prediction, it isn’t a problem as long as future observations

have the same structure in the explanatory variables.

• For explanation, we can’t separate the e�ect of variables that

measure the same thing, do joint tests instead.

• Dropping an o�ending variable is only necessary if you, for

some reason, want a model with as few terms as possible. Do

not conclude that a variable dropped due to multicollinearity

isn’t related to the response!
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Errors in variables

We assumed fixed X .

You can also use least squares if X is random before you observe

it, and you want to do inference conditional on the observed X .

If, X is measured with error, i.e.

X = Xa + ”

Y = Xa— + ‘

then the least squares estimates will be biased (usually towards

zero if Xa and ” are unrelated).

There are “errors in variables” estimation techniques.
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Linear transformations of predictors

Transformations of the form

Xj æ Xj ≠ a

b

do not change the fit of the regression model, only the

interpretation of the parameters.

One useful one is to standardise all the explanatory variables

Xj æ Xj ≠ X̄j
sXj

which puts all the parameters on the same scale: “. . . a change in

Xj of one standard deviation is associated with a change in

response of —j . . . ”

Also, can be useful to re-express a predictor in more reasonable

units. For example, expressing income in $1000s rather than $1s.
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