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Motivation

The inferences we’ve covered so far relied on our assumption of

Normal errors:

‘ ≥ N(0, ‡2In◊n)

For example, we’ve seen under this assumption, the least squares

estimates are also Normally distributed:

—̂ ≥ N
3

—, ‡2
1
XT X

2≠14

If the errors aren’t truly Normally distributed, what

distribution do the estimates have?
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Warm-up: Your Turn

Imagine the errors are in fact t3 distributed?

With your neighbour: design a simulation to understand the

distribution of the least squares estimates.
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Example: 1. Fix n, fix X
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Example: 1. Fix —, find ŷ
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Example: 2. Simulate errors, find y
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Example: 3. Find least squares line
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Example: 4. Repeat #2. and #3. many times
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Example: Examine distribution of estimates
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Example: Compared to theory
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When the errors aren’t Normal: CLT

Think of our estimates like linear combinations of the errors. I.e. a

sort of average of i.i.d random variables.

Some version of the Central Limit Theorem will apply.

For large samples, even when the errors aren’t Normal,

—̂≥̇N(—, ‡2
(XT X )

≠1
)
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Summary so far

If we knew the error distribution and true parameters we could use

simulation to understand the sampling distribution the least

squares estimates.

Simulation can also be used to demonstrate the CLT at work in

regression.
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Bootstrap confidence intervals

In practice, with data in front of us, we don’t know the distribution

of the errors (nor the true parameter values).

The bootstrap is one approach to estimate the sampling

distribution of —̂, by using the simulation idea, and substituting in

our best guesses for the things we don’t know.
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Bootstrapping regression

(Model based resampling)

0. Fit model and find estimates, —̂, and residuals, ei

1. Fix X ,

2. For k = 1, . . . , B
2.1 Generate errors, ‘ú

i sampled with replacement from ei
2.2 Construct y , using the model, y = ŷ + ‘ú

2.3 Use least squares to find —̂ú
(k)

3. Examine the distribution of —̂ú
and compare to —̂

One confidence interval for —j is the 2.5% and 97.5% quantiles of

the distribution of —̂ú
j .

(Known as the Percentile method, there are other (better?)
methods).
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Example: Faraway Galapagos Islands

(I’ll illustrate with simple linear regression, Faraway does multiple
case in 3.6)

−200

0

200

400

0 500 1000 1500
Elevation

Sp
ec

ie
s

Observed data

16

-

:
Eth Elevates



Bootstrap: 1. Find —̂, ŷ , and ei .
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Bootstrap: Using fixed X , ˆbeta from observed data
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Bootstrap: 2. Resample residuals to construct bootstrapped

response
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Bootstrap: 3. Fit regression model to bootstrapped response
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Bootstrap: 3. Repeat #2. and #3. many times
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Examine distribution of estimates
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High level: bootstrap idea

We don’t know the distribution of the errors, but our best guess is

probably the empirical c.d.f on the residuals.

Sampling from a random variable with a c.d.f. defined as the

empirical c.d.f. of the residuals, boils down to sampling with

replacement from residuals.
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Limitations

We might rely on bootstrap confidence intervals when we are

worried about the assumption of Normal errors. But, there are

limitations.

• We still rely on the assumption that the errors are

independent and identically distributed.

• Generally scaled residuals are used (residuals don’t have the

same variance, more later)

• An alternative bootstrap resamples the (yi , xi1, . . . , xip)

vectors, i.e. resamples the rows of the data, a.k.a resampling
cases bootstrap.
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