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What to expect on the final?

I Study guide posted along with last year’s final.

Three questions worth roughly equal amounts

1. Calculations, inference and interpretation. Like Q2 and
Q3 on midterm: t-tests, F-tests, confidence intervals,
prediction intervals etc. Know your formulas, how to use them
and how to interpret the results.

2. Assumptions and diagnostics. Examine plots, identify
problems, discuss the consequences of the problem, suggest
remedies, suggest ways to verify if the suggestions worked. Or
suggest ways to diagnose certain problems.

3. Everything else, at a conceptual level.



From last time

What model did you end up with?
Did you run into any difficulties?

I Cross validation slide



Today

I The Bias-Variance tradeoff
I Regularized regression: lasso and ridge



Bias-Variance tradeoff

For estimates, the mean squared error of an estimate can be broken
down into bias and variance terms:
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)
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Often in statistics, we focus on estimates that are unbiased (so the
second term is zero), and focus on minimising the variance term.
You might argue that you are willing to introduce a little bias, if it
reduces the variance enough to reduce the overall mean squared
error in the estimate.



There is a similar breakdown for the mean square error in prediction.
Let f̂(X) indicate the regression model for predicting an
observation with explanantory values X.
If the true data is generated according to Y = f(X) + ε, where
E (ε) = 0 and Var (ε) = σ2, then the MSE for a point x0:
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Bias captures how far our predictions are from the true mean on
average (over repeated samples).
Variance captures how much our predictions vary (over repeated
samples).



Simulated Example
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Example data with true mean function



High bias, low variance
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Linear fits over repeated samples



Low bias, low variance
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Cubic fits over repeated samples



Low bias, high variance
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In general, more complex models decrease bias and increase
variance. We hunt for the sweet spot where MSE is minimized.
There aren’t nice partitions into bias and variance for other metrics,
but the pattern is usually the same. Increasing complexity only
improves performance to a point, then it decreases performance.



Regularized regression

One approach that introduces bias into the coefficient estimates, is
regularized (a.k.a. penalized) regression. Instead of minimising

n∑
i=1

(yi − ŷi)2

minimise
n∑

i=1
(yi − ŷi)2 + λ

p∑
j=1

f(βj)

When f(βj) = β2
j , the method is called ridge regression, and

when f(βj) = |βj | the method is called lasso.
The general idea: the first term rewards good fit to the data, the
second penalizses for large values on the coefficients.
The result: estimates shrink toward zero (introducing bias) and have
smaller variance.



Alternative view

You can also view ridge and lasso as constrained minimisation,
where we minimise

n∑
i=1

(yi − ŷi)2

subject to the constraints
p∑

j=1
β2

j ≤ t for ridge

p∑
j=1
|βj | ≤ s for lasso



Ridge estimates

library(MASS)
fit_ridge <- lm.ridge(fat ~ ., trainmeat,

lambda = seq(0, 5e-8, len = 21))
matplot(fit_ridge$lambda, coef(fit_ridge),

type = "l", xlab = expression(lambda),
ylab = expression(hat(beta)), col = 1)
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Lasso estimates

library(lars)
fit_lasso <- lars(as.matrix(trainmeat[ , -101]), trainmeat$fat)
## plot(fit_lasso)



Lasso estimates



cvout <- cv.lars(as.matrix(trainmeat[ , -101]), trainmeat$fat)
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cvout$index[which.min(cvout$cv)]

## [1] 0.02020202

testx <- as.matrix(testmeat[,-101])

predlars <- predict(fit_lasso,testx, s=0.0101, mode="fraction")
sqrt(mean((testmeat$fat - predlars$fit)^2))

## [1] 2.090821

predlars <- predict(fit_lasso, s=0.0101, type="coef", mode="fraction")
plot(predlars$coef,type="h",ylab="Coefficient")
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## [1] 20



Key points

I Regularized/Penalized regression models have a tuning
parameter that controls the degree of penalization/shrinkage

I The tuning parameter may be chosen to optimize some kind of
criterion

I Lasso estimates can be exactly zero (so it performs model
selection as well)


