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Today

I Finish causal inference
I Bootstrap intervals



Bootstrap confidence intervals

What if ε are not from a Normal distribution?
The central limit theorem kicks in, so with large samples, even when
the errors aren’t Normal,

β̂∼̇N(β, σ2(XTX)−1)

The bootstrap is one approach to estimate the sampling distribution
of β̂ .



Outline

I What do we do if we know everything? Simulation.
I How does the bootstrap approximate that process?
I In practice
I Limitations



Simulation

To understand the sampling distribution of β̂ we could use
simulation.
Just like in HW#4. We know β and the distribution of ε.

1. Fix X
2. For k = 1, . . . , B

2.1 Generate errors, εi
i.i.d∼ Normal(0, σ2)

2.2 Construct y, using the model, y = Xβ + ε
2.3 Use least squares to find β̂∗

(k)

3. Examine the distribution of β̂∗ and compare to β.
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1.455147 2.539186



Simulation

If we want to know what happens to the distribution of β̂ when the
errors aren’t Normal, we could assume some distribution for them
and use simulation.
So, swap out step 2.1 for some other distribution. Let’s say,
Student’s t with 3 d.f.
Just like in HW#4. We know β and the distribution of ε.

1. Fix X
2. For k = 1, . . . , B

2.1 Generate errors, εi
i.i.d∼ Student’s-t3

2.2 Construct y, using the model, y = Xβ + ε
2.3 Use least squares to find β̂∗

(k)

3. Examine the distribution of β̂∗ and compare to β
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Bootstrapping regression

In a real life application we don’t know β or the actual distribution
of the errors. But we have some reasonable guesses we could make.
0. Fit model and find β̂ and ei

1. Fix X,
2. For k = 1, . . . , B

2.1 Generate errors, εi sampled with replacement from ei

2.2 Construct y, using the model, y = ŷ + ε
2.3 Use least squares to find β̂∗

(k)

3. Examine the distribution of β̂∗ and compare to β̂

A naive confidence interval for βj is the 2.5% and 97.5% quantiles
of the distribution of β̂∗. (This relies on E

(
β̂∗

)
= β̂, and there are

better methods)
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A reminder of the bootstrap idea

We don’t know the distribution of some random variable Z but we
can estimate it with observations of the random variable
Zi, i = 1, . . . , n.
Usually, we think about this as using the empirical c.d.f. of Zi to
approximate the true c.d.f. of Z.
In practice, sampling from a random variable with a c.d.f. defined as
the emprical c.d.f. of a set of numbers, Zi, boils down to sampling
with replacement from Zi.



Limitations

We might rely on bootstrap confidence intervals when we are worried
about the assumption of Normal errors. But, there are limitations.

I We still rely on the assumption that the errors are independent
and indentically distributed.

I Generally scaled residuals are used (residuals don’t have the
same variance, more later)

I An alternative bootstrap resamples the (yi, xi1, . . . , xip)
vectors.


