Bootstrap Cls ST552 Lecture 13

Charlotte Wickham

Feb 08, 2016

Today

- ► Finish causal inference
- ► Bootstrap intervals

Bootstrap confidence intervals

What if ϵ are not from a Normal distribution?

The central limit theorem kicks in, so with large samples, even when the errors aren't Normal,

$$\hat{\beta} \dot{\sim} N(\beta, \sigma^2(X^T X)^{-1})$$

The bootstrap is one approach to estimate the sampling distribution of $\hat{\beta}$.

Outline

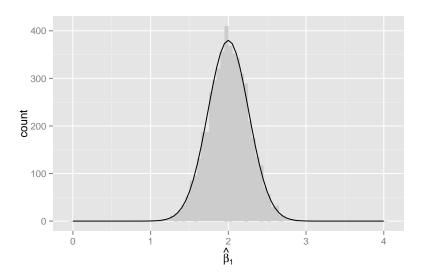
- ▶ What do we do if we know everything? Simulation.
- ► How does the bootstrap approximate that process?
- ► In practice
- ▶ Limitations

Simulation

To understand the sampling distribution of $\hat{\beta}$ we could use simulation.

Just like in HW#4. We know β and the distribution of ϵ .

- 1. Fix *X*
- 2. For k = 1, ..., B
 - 2.1 Generate errors, $\epsilon_i \overset{i.i.d}{\sim} Normal(0, \sigma^2)$
 - 2.2 Construct y, using the model, $y = X\beta + \epsilon$
 - 2.3 Use least squares to find $\hat{\beta}_{(k)}^*$
- 3. Examine the distribution of $\hat{\beta}^*$ and compare to β .



> quantile(ests\$X1, c(0.025, 0.975))
 2.5% 97.5%
1.455147 2.539186

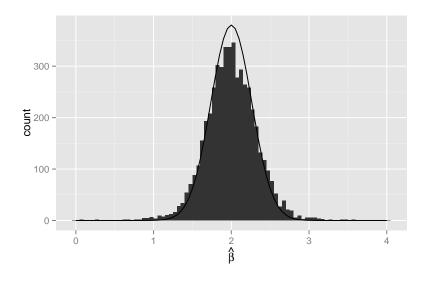
Simulation

If we want to know what happens to the distribution of $\hat{\beta}$ when the errors aren't Normal, we could assume some distribution for them and use simulation.

So, swap out step 2.1 for some other distribution. Let's say, Student's t with 3 d.f.

Just like in HW#4. We know β and the distribution of ϵ .

- 1. Fix X
- 2. For k = 1, ..., B
 - 2.1 Generate errors, $\epsilon_i \overset{i.i.d}{\sim} \text{Student's-t}_3$
 - 2.2 Construct y , using the model, $y = X\beta + \epsilon$
 - 2.3 Use least squares to find $\hat{\beta}_{(k)}^*$
- 3. Examine the distribution of $\hat{\beta}^*$ and compare to β



> quantile(ests_t\$X1, c(0.025, 0.975))
 2.5% 97.5%
1.355579 2.631276

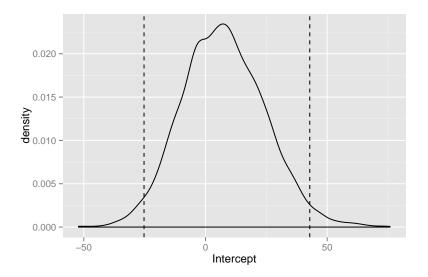
Bootstrapping regression

In a real life application we don't know β or the actual distribution of the errors. But we have some reasonable guesses we could make. 0. Fit model and find $\hat{\beta}$ and e_i

- 1. Fix X.
- 2. For k = 1, ..., B
 - 2.1 Generate errors, ϵ_i sampled with replacement from e_i
 - 2.2 Construct y, using the model, $y = \hat{y} + \epsilon$
 - 2.3 Use least squares to find $\hat{\beta}_{(k)}^*$
- 3. Examine the distribution of $\hat{\beta}^*$ and compare to $\hat{\beta}$

A naive confidence interval for β_j is the 2.5% and 97.5% quantiles of the distribution of $\hat{\beta}^*$. (This relies on $E\left(\hat{\beta}^*\right) = \hat{\beta}$, and there are better methods)

Example - Faraway



A reminder of the bootstrap idea

We don't know the distribution of some random variable Z but we can estimate it with observations of the random variable

 $Z_i, \quad i=1,\ldots,n.$

Usually, we think about this as using the empirical c.d.f. of Z_i to approximate the true c.d.f. of Z.

In practice, sampling from a random variable with a c.d.f. defined as the emprical c.d.f. of a set of numbers, Z_i , boils down to sampling with replacement from Z_i .

Limitations

We might rely on bootstrap confidence intervals when we are worried about the assumption of Normal errors. But, there are limitations.

- ► We still rely on the assumption that the errors are independent and indentically distributed.
- Generally scaled residuals are used (residuals don't have the same variance, more later)
- An alternative bootstrap resamples the $(y_i, x_{i1}, \dots, x_{ip})$ vectors.